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Abstract. We analyze globally convergent, derivative-free trust-region algorithms relying on
radial basis function interpolation models. Our results extend the recent work of Conn, Scheinberg,
and Vicente [SIAM J. Optim., 20 (2009), pp. 387–415] to fully linear models that have a nonlinear
term. We characterize the types of radial basis functions that fit in our analysis and thus show global
convergence to first-order critical points for the ORBIT algorithm of Wild, Regis, and Shoemaker
[SIAM J. Sci. Comput., 30 (2008), pp. 3197–3219]. Using ORBIT, we present numerical results for
different types of radial basis functions on a series of test problems. We also demonstrate the use of
ORBIT in finding local minima on a computationally expensive environmental engineering problem
involving remediation of contaminated groundwater.
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1. Introduction. This paper concerns algorithms for solving the unconstrained
optimization problem

(1.1) min
x∈R

n
f(x),

when only function values f(x) (and not values of the gradient ∇f(x) or higher-
order derivatives) are available to the optimization algorithm. This situation typically
arises when evaluation of the function f requires running a numerical simulation or
performing a physical experiment. It is important to distinguish the present setting
from nonsmooth optimization, which concerns problems where derivatives of f do not
exist. Here we consider deterministic, real-valued functions f that are assumed to be
continuously differentiable with a Lipschitz gradient ∇f and bounded from below.

Apart from the zero-order (“derivative-free”) methods examined here, there are
two primary approaches for solving (1.1) when derivatives of f are not directly avail-
able. When the source code for evaluating f is available, algorithmic differentia-
tion (AD) [15] can be used to produce a derivative code, which can then be used
in derivative-based optimization methods. Similarly, numerical differentiation (e.g.,
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with a finite-difference scheme) can be employed to obtain derivative approximations
for use in derivative-based methods. The former approach is not viable, for exam-
ple, when some portion of the function evaluation corresponds to a black box (e.g.,
requires a proprietary/executable-only evaluation). The latter approach can require
careful selection of finite-difference parameters (see, e.g., [27]), and performing O(n)
function evaluations at every iteration in order to determine a full gradient may be
prohibitively expensive.

Research in derivative-free optimization has received renewed and sustained in-
terest over the past 15 years (see the recent books [10, 20] for a summary). The
proliferation of high-performance computing and an abundance of legacy codes have
driven demand for derivative-free methods throughout computational science and en-
gineering. These methods can generally be categorized into those based on system-
atic sampling of the function along well-chosen directions [1, 18, 21, 22, 23], and
those employing a trust-region framework with a local approximation of the function
[7, 24, 30, 31, 32].

Many methods in the former category are popular with engineers for the ease
of basic implementation. These include the Nelder-Mead simplex algorithm [23] and
pattern search [22]. Such methods also admit natural parallel implementations [18,
21], where different poll directions are sent to different processors for evaluation, and
extensions can be shown to converge even when derivatives do not exist [1].

Methods in the latter category (including the one analyzed in this paper) use
prior function evaluations to construct a model that approximates the function in
a neighborhood of the current iterate. These models (for example, fully quadratic
[7, 24, 31], underdetermined or structured quadratic [32], or radial basis functions
(RBFs) [30, 38]) yield computationally attractive derivatives and hence are easy to
optimize over within the neighborhood.

Each of these methods, as well as the one analyzed in this paper, assumes that
the function f is a black box. Knowledge of additional structure in the function f
can be exploited in order to reduce the number of evaluations of f required to solve
(1.1). Recent examples of exploiting known structure include methods for nonlinear
least-squares problems with black-box residuals [28] and methods for cases where the
unavailable derivatives are sparse [2].

A keystone of the present work is our assumption that the computational expense
of the function evaluation yields a bottleneck for optimization (the expense of eval-
uating the function at a single point outweighing any other expense or overhead of
an algorithm). In some applications this could mean that function evaluation can
require from a few seconds on a state-of-the-art machine to several hours on a large
cluster, even when the functions are parallelized. The functions that motivate our
work usually depend on complex deterministic computer simulations, including those
that numerically solve systems of PDEs governing underlying physical phenomena.

This paper is driven by work on the ORBIT (Optimization by Radial Basis func-
tions In Trust regions) algorithm [38] and provides the key theoretical conditions
needed for such algorithms to converge to first-order critical points. We find that
the popular thin-plate spline RBFs do not fit in this globally convergent framework.
Furthermore, our numerical results comparing RBF types show that the Gaussian
RBFs popularly used in kriging [11, 19] are not as effective in our algorithms as are
other RBF types. Comparisons with other types of derivative-free methods can be
found in [38].

ORBIT is a trust-region algorithm relying on an interpolating RBF model with
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a linear polynomial tail. A primary distinction between ORBIT and the previously
proposed RBF-based algorithm in [30] is the management of the interpolation set
(Algorithm 3). In contrast to [30], the expense of our objective function allows us
to effectively ignore the computational complexity of the overhead of building and
maintaining the RBF model.

Our first goal is to show global convergence to first-order critical points for very
general interpolation models. In section 2 we review the multivariate interpolation
problem and show that the local error between the function (and its gradient) and an
interpolation model (and its gradient) can be bounded by using a simple condition
on n+1 of the interpolation points. In the spirit of [8], we refer to such interpolation
models as fully linear. In section 3 we review derivative-free trust-region methods
and analyze conditions necessary for global convergence when fully linear models are
employed. For this convergence analysis we benefit from the results in [9].

Our next goal is to use this analysis to identify the conditions necessary for
obtaining a globally convergent trust-region method by using an interpolating RBF-
based model. In section 4 we introduce radial basis functions and the fundamental
property of conditional positive definiteness, which we rely on in ORBIT to construct
uniquely defined RBF models with bounded coefficients. We also give necessary and
sufficient conditions for different RBF types to fit within our framework.

In section 5 we examine the effect of selecting from three popular radial basis
functions covered by the theory by running the resulting algorithm on a set of smooth
test functions. We also examine the effect of varying the maximum number of in-
terpolation points. We motivate the use of ORBIT to quickly find local minima of
computationally expensive functions with an application problem (requiring nearly
1 CPU-hour per evaluation on a Pentium 4 machine) arising from detoxification of
contaminated groundwater. We note that additional computational results, both on a
set of test problems and on two applications from environmental engineering, as well
as more practical considerations, are addressed in [38].

2. Interpolation Models. We begin our discussion on models that interpolate
a set of scattered data with an introduction to the polynomial models that are heavily
utilized by derivative-free trust-region methods in the literature [7, 24, 31, 32].

2.1. Notation. We first collect the notation conventions used throughout the
paper. Nn

0 will denote n-tuples from the natural numbers including zero. A vector
x ∈ R

n will be written in component form as x = [χ1, . . . , χn]T to differentiate it
from a particular point xi ∈ R

n. For d ∈ N0, let Pn
d−1 denote the space of n-variate

polynomials of total degree no more than d − 1, with the convention that Pn
−1 = ∅.

Let Y = {y1, y2, . . . , y|Y|} ⊂ R
n denote an interpolation set of |Y| points where (yi, fi)

is known. For ease of notation, we will often assume interpolation relative to some
base point xb ∈ R

n, made clear from the context, and will employ the set notation
xb + Y = {xb + y : y ∈ Y}. We will work with a general norm ‖ · ‖k that we relate to
the 2-norm ‖ · ‖ through a constant c1, depending only on n, satisfying

(2.1) ‖·‖ ≤ c1 ‖·‖k , ∀k.

The polynomial interpolation problem is to find a polynomial P ∈ Pn
d−1 such that

(2.2) P (yi) = fi, ∀yi ∈ Y,

for arbitrary values f1, . . . , f|Y| ∈ R. Spaces where unique polynomial interpolation is
always possible given an appropriate number of distinct data points are called Haar
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spaces. A classic theorem of Mairhuber and Curtis (see [35, p. 19]) states that Haar
spaces do not exist when n ≥ 2. Hence additional conditions are necessary for the
multivariate problem (2.2) to be well-posed. We use the following definition.

Definition 2.1. The points Y are Pn
d−1-unisolvent if the only polynomial in

Pn
d−1 that vanishes at all points in Y is the zero polynomial.

The monomials {χα1

1 · · ·χαn
n : α ∈ Nn

0 ,
∑n

i=1 αi ≤ d − 1} form a basis for Pn
d−1,

and hence any polynomial P ∈ Pn
d−1 can be written as a linear combination of such

monomials. In general, for a basis π : R
n → R

p̂ we will use the representation
P (x) =

∑p̂
i=1 νiπi(x), where p̂ = dim Pn

d−1 =
(

n+d−1
n

)

. Hence finding an interpolating

polynomial P ∈ Pn
d−1 is equivalent to finding coefficients ν ∈ R

p̂ for which (2.2) holds.

Defining Π ∈ R
p̂×|Y| by Πi,j = πi(yj), it follows that Y is Pn

d−1-unisolvent if
and only if Π is full rank, rankΠ = p̂. Furthermore, the interpolation in (2.2) is
unique for arbitrary right-hand-side values f1, . . . , f|Y| ∈ R if and only if |Y| = p̂ and
Π is nonsingular. In this case, the unique polynomial is defined by the coefficients
ν = Π−T f .

One can easily see that existence and uniqueness of an interpolant are independent
of the particular basis π employed. However, the conditioning of the corresponding
matrix Π depends strongly on the basis chosen, as noted (for example) in [8].

Based on these observations, we see that in order to uniquely fit a polynomial of
degree d − 1 to a function, at least p̂ = dim Pn

d−1 =
(

n+d−1
n

)

function values must
be known. When n is not very small, the computational expense of evaluating f to
repeatedly fit even a quadratic (with p̂ = (n+1)(n+2)

2 ) is large.

2.2. Fully Linear Models. We now explore a class of fully linear interpolation
models, which can be formed by using as few as a linear (in the dimension, n) number
of function values. Since such models are heavily tied to Taylor-like error bounds, we
will require assumptions on the function f as in this definition from [8].

Definition 2.2. Suppose that B = {x ∈ R
n : ‖x− xb‖k ≤ ∆} and f ∈ C1[B].

For fixed κf ,κg > 0, a model m ∈ C1[B] is said to be fully linear on B if for all x ∈ B

|f(x)−m(x)| ≤ κf∆
2,(2.3)

‖∇f(x)−∇m(x)‖ ≤ κg∆.(2.4)

This definition ensures that first-order Taylor-like bounds exist for the model
within the compact neighborhood B. For example, if f ∈ C1[R], ∇f has Lipschitz con-
stant γf and if m is the derivative-based linear model m(xb + s) = f(xb)+∇f(xb)T s,
then m is fully linear with constants κg = κf = γf on any bounded region B.

Since the function’s gradient is unavailable in our setting, our focus is on models
that interpolate the function at a set of points:

(2.5) m(xb + yi) = f(xb + yi) for all yi ∈ Y = {y1 = 0, y2, . . . , y|Y|} ⊂ R
n.

Although we may have interpolation at more points, for the moment we work with a
subset of exactly n + 1 points and always enforce interpolation at the base point xb

so that y1 = 0 ∈ Y. The remaining n (nonzero) points compose the square matrix
Y =

[

y2 · · · yn+1

]

.
We can now state error bounds, similar to those in [8], for our models of interest.
Theorem 2.3. Suppose that f and m are continuously differentiable in B = {x :

‖x− xb‖k ≤ ∆} and that ∇f and ∇m are Lipschitz continuous in B with Lipschitz
constants γf and γm, respectively. Further suppose that m satisfies the interpolation
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conditions in (2.5) at a set of points {y1 = 0, y2, . . . , yn+1} ⊆ B − xb such that
∥

∥Y −1
∥

∥ ≤ ΛY

c1∆
, for a fixed constant ΛY < ∞ and c1 from (2.1). Then for any x ∈ B,

|f(x)−m(x)| ≤
√
nc21 (γf + γm)

(

5

2
ΛY +

1

2

)

∆2 = κf∆
2,(2.6)

‖∇f(x)−∇m(x)‖ ≤ 5

2

√
nΛY c1 (γf + γm)∆ = κg∆.(2.7)

Proved in [36], Theorem 2.3 provides the constants κf ,κg > 0 such that condi-
tions (2.3) and (2.4) are satisfied, and hence m is fully linear in a neighborhood B
containing the n + 1 interpolation points. This result holds for very general inter-
polation models, requiring only a minor degree of smoothness and conditions on the
points being interpolated. The conditions on the interpolation points are equivalent
to requiring that the points {y1, y2, . . . , yn+1} are sufficiently affinely independent (or
equivalently, that the set {y2− y1, . . . , yn+1− y1} is sufficiently linearly independent),
with ΛY quantifying the degree of independence.

One can iteratively construct a set of such points given a set of candidate dis-
placements D = {d1, . . . , d|D|} ⊂ {x ∈ R

n : ‖x‖k ≤ ∆} (e.g., from the nearby points
xb +D at which f has been evaluated) by using LU- and QR-like algorithms as noted
in [8].

For example, in ORBIT points are added to the interpolation set Y one at a time
by using a QR-like variant described in [38]. The crux of the algorithm is to add
a candidate from D to Y if its projection onto the subspace orthogonal to spanY is
sufficiently large (as measured by a constant θ ∈ (0, 1]). If the candidates in D are
not sufficiently affinely independent, such algorithms also produce points belonging
to B that are perfectly conditioned with respect to the projection so that m can be
easily made fully linear in fewer than n function evaluations.

We conclude this section by stating a lemma from [38] that ensures a QR-like
procedure similar to one mentioned yields a set of points in Y satisfying

∥

∥Y −1
∥

∥ ≤ ΛY

c1∆
.

Lemma 2.4. Let QR = 1
c1∆

Y denote a QR factorization of a matrix 1
c1∆

Y whose

columns satisfy
∥

∥

Yj

c1∆

∥

∥ ≤ 1, j = 1, . . . , n. If rii ≥ θ > 0 for i = 1, . . . , n, then
∥

∥Y −1
∥

∥ ≤ ΛY

c1∆
for a constant ΛY depending only on n and θ.

3. Derivative-Free Trust-Region Methods. The interpolation models of the
previous section were constructed to approximate a function in a local neighborhood
of a point xb. The natural algorithmic extensions of such models are trust-region
methods (given full treatment in [6]), whose general form we now briefly review.

Trust-region methods generate a sequence of iterates {xk}k≥0 ⊆ R
n by employing

a surrogate model mk : Rn → R, assumed to approximate f within a neighborhood
of the current xk. For a (center, radius) pair (xk,∆k > 0) we define the trust region

(3.1) Bk = {x ∈ R
n : ‖x− xk‖k ≤ ∆k},

where we distinguish the trust-region norm (at iteration k), ‖·‖k, from other norms
used here. New points are obtained by solving subproblems of the form

(3.2) min
s

{mk(xk + s) : xk + s ∈ Bk} .

The pair (xk,∆k) is then updated according to the ratio of actual to predicted
improvement. Given a maximum radius∆max, the design of the trust-region algorithm
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ensures that f is sampled only within the relaxed level set

(3.3) L(x0) = {y ∈ R
n : ‖x− y‖k ≤ ∆max for some x with f(x) ≤ f(x0)}.

Hence one really requires only that f be sufficiently smooth within L(x0).
When derivatives are unavailable, smoothness of the function f is no longer suf-

ficient for guaranteeing that a model mk approximates the function locally. Hence
the main difference between classical and derivative-free trust-region algorithms is the
addition of safeguards to account for and improve models of poor quality.

Historically (see [7, 24, 31, 32]), the most frequently used model is a quadratic,

(3.4) mk(xk + s) = f(xk) + gTk s+
1

2
sTHks,

the coefficients gk and Hk being found by enforcing interpolation as in (2.5). As
discussed in section 2, these models rely heavily on results from multivariate interpo-
lation. Quadratic models are attractive in practice because the resulting subproblem
in (3.2), for a 2-norm trust region, is one of the only nonlinear programs for which
global solutions can be efficiently computed [25].

A downside of quadratic models in our computationally expensive setting is
that the number of interpolation points (and hence function evaluations) required
is quadratic in the dimension of the problem. Noting that it may be more efficient to
use function evaluations for forming subsequent models, Powell designed his NEWUOA

code [32] to rely on least-change quadratic models interpolating fewer than (n+1)(n+2)
2

points. More recent work in [12, 14] has also explored loosening the restrictions of a
quadratic number of geometry conditions.

3.1. Fully Linear Derivative-Free Models. Recognizing the difficulty (and
possible inefficiency) of maintaining geometric conditions on a quadratic number of
points, we will focus on using the fully linear models introduced in section 2. These
models can be formed with a linear number of points while still maintaining the local
approximation bounds in (2.3) and (2.4).

We will follow the general trust-region algorithmic framework introduced for linear
models by Conn et al. [9] in order to arrive at a similar convergence result for the
types of models considered here. Given standard trust-region inputs 0 ≤ η0 < η1 < 1,
0 < γ0 < 1 < γ1, 0 < ∆0 ≤ ∆max, and x0 ∈ R

n and constants κd ∈ (0, 1),κf >
0,κg > 0, ε > 0, µ > β > 0,α ∈ (0, 1), the general first-order derivative-free trust-
region algorithm is shown in Algorithm 1. This algorithm is discussed in [9], and
we note that it forms an infinite loop, a recognition that termination in practice is a
result of exhausting a budget of expensive function evaluations.

A benefit of working with more general fully linear models is that they allow
for nonlinear modeling of f . Hence, we will be interested primarily in models with
nontrivial Hessians, ∇2mk .= 0, which are uniformly bounded by some constant κH .

The sufficient decrease condition that we will use in Step 1.2 then takes the form

(3.7) mk(xk)−mk(xk + s) ≥ κd

2
‖∇mk(xk)‖min

{

‖∇mk(xk)‖
κH

,
‖∇mk(xk)‖
‖∇mk(xk)‖k

∆k

}

,

for some prespecified constant κd ∈ (0, 1). This condition is similar to those found in
the trust-region setting when general norms are employed [6]. The following lemma
guarantees we will always be able to find an approximate solution, sk, to the sub-
problem (3.2) that satisfies condition (3.7).
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Algorithm 1 Iteration k of a first-order (fully linear) derivative-free algorithm [9].

1.1. Criticality test If ‖∇mk(xk)‖ ≤ ε and either mk is not fully linear in Bk or ∆k >
µ ‖∇mk(xk)‖:

Set ∆̃k = ∆k and make mk fully linear on {x : ‖x− xk‖k ≤ ∆̃k}.

While ∆̃k > µ ‖∇mk(xk)‖:
Set ∆̃k ← α∆̃k and make mk fully linear on {x : ‖x− xk‖k ≤ ∆̃k}.

Update ∆k = max{∆̃k,β ‖∇mk(xk)‖}.

1.2. Obtain trust-region step sk satisfying a sufficient decrease condition (e.g., (3.7)).

1.3. Evaluate f(xk + sk).

1.4. Adjust trust region according to ratio ρk = f(xk)−f(xk+sk)
mk(xk)−mk(xk+sk)

:

(3.5) ∆k+1 =















min{γ1∆k,∆max} if ρk ≥ η1 and ∆k < β ‖∇mk(xk)‖
∆k if ρk ≥ η1 and ∆k ≥ β ‖∇mk(xk)‖
∆k if ρk < η1 and mk is not fully linear
γ0∆k if ρk < η1 and mk is fully linear,

(3.6) xk+1 =







xk + sk if ρk ≥ η1
xk + sk if ρk > η0 and mk is fully linear
xk else.

1.5. Improve mk if ρk < η1 and mk is not fully linear.

1.6. Form new model mk+1.

Lemma 3.1. If mk ∈ C2(Bk) and κH > 0 satisfies

(3.8) ∞ > κH ≥ max
x∈Bk

∥

∥∇2mk(x)
∥

∥ ,

then for any κd ∈ (0, 1) there exists an s ∈ Bk − xk satisfying (3.7).
Lemma 3.1 (proved in [36]) is our variant of similar ones in [6] and describes a

back-tracking line search algorithm to obtain a step that yields a model reduction at
least a fraction of that achieved by the Cauchy point. As an immediate corollary we
have that there exists a step s ∈ Bk − xk satisfying (3.7) such that

(3.9) ‖s‖k ≥ min

{

∆k,κd
‖∇mk(xk)‖k

κH

}

,

and hence the size of this step is bounded from zero if ‖∇mk(xk)‖k and ∆k are.
Reluctance to use nonpolynomial models in practice can be attributed to the

difficulty of solving the subproblem (3.2). However, using the sufficient decrease
guaranteed by Lemma 3.1, we are still able to guarantee convergence to first-order
critical points. This result is independent of the number of local or global minima
that the subproblem may have because of using multimodal models.

Further, we assume that the twice continuously differentiable model used in prac-
tice will have first- and second-order derivatives available to solve (3.2). Using a
more sophisticated solver may be especially attractive when this expense is negligible
relative to evaluation of f at the subproblem solution.

We now state the convergence result for our models of interest and Algorithm 1.
Theorem 3.2. Suppose that the following two assumptions hold:
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(AF) f ∈ C1[Ω] for some open Ω ⊃ L(x0) (with L(x0) defined in (3.3)), ∇f is
Lipschitz continuous on L(x0), and f is bounded on L(x0).

(AM) For all k ≥ 0 we have mk ∈ C2[Bk], ∞ > κH ≥ maxx∈Bk

∥

∥∇2mk(x)
∥

∥, and
mk can be made (and verified to be) fully linear by some finite procedure.

Then for the sequence of iterates generated by Algorithm 1, we have

(3.10) lim
k→∞

∇f(xk) = 0.

Proof. This follows in large part from the lemmas in [9] with minor changes made
to accommodate our sufficient decrease condition and the trust-region norm employed.
These lemmas, and further explanation where needed, are provided in [36].

4. Radial Basis Functions and ORBIT. Having outlined the fundamental con-
ditions in Theorem 3.2 needed to show convergence of Algorithm 1, in this section
we analyze which radial basis function models satisfy these conditions. We also show
how the ORBIT algorithm fits in this globally convergent framework.

Throughout this section we drop the dependence of the model on the iteration
number, but we intend for the model m and base point xb to be the kth model and
iterate, mk and xk, in the trust-region algorithm of the previous section.

An alternative to polynomials is an interpolating surrogate that is a linear com-
bination of nonlinear nonpolynomial basis functions. One such model is of the form

(4.1) m(xb + s) =

|Y|
∑

j=1

λjφ(‖s− yj‖) + P (s),

where φ : R+ → R is a univariate function and P ∈ Pn
d−1 is a polynomial as in

section 2. Such models are called radial basis functions because m(xb + s) − P (s) is
a linear combination of shifts of a function that is constant on spheres in R

n.
Interpolation by RBFs on scattered data has only recently gained popularity in

practice [5]. In the context of optimization, RBF models have been used primarily for
global optimization [4, 16, 33] because they are able to model multimodal/nonconvex
functions and interpolate a large number of points in a numerically stable manner.

To our knowledge, Oeuvray was the first to employ RBFs in a local optimization
algorithm. In his 2005 dissertation [29], he introduced BOOSTERS, a derivative-free
trust-region algorithm using a cubic RBF model with a linear tail. Oeuvray was
motivated by medical image registration problems and was particularly interested in
“doping” his algorithm with gradient information [30]. When the number of inter-
polation points is fixed from one iteration to the next, Oeuvray also showed that
the RBF model parameters λ and ν can be updated in the same complexity as the
underdetermined quadratics from [32] (interpolating the same number of points).

4.1. Conditionally Positive Definite Functions. We now define the funda-
mental property we rely on, using the notation of Wendland [35].

Definition 4.1. Let π be a basis for Pn
d−1, with the convention that π = ∅ if

d = 0. A function φ is said to be conditionally positive definite of order d if for all sets
of distinct points Y ⊂ R

n and all λ .= 0 satisfying
∑|Y|

j=1 λjπ(yj) = 0, the quadratic

form
∑|Y|

i,j=1 λiλjφ(‖yi − yj‖) is positive.
Table 4.1 lists examples of popular radial functions and their orders of conditional

positive definiteness. Note that if a radial function φ is conditionally positive definite
of order d, then it is also conditionally positive definite of order d̂ ≥ d [35, p. 98].
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Table 4.1
Popular twice continuously differentiable RBFs and order of conditional positive definiteness.

φ(r) Order Parameters Example

rβ 2 β ∈ (2, 4) Cubic, r3

(γ2 + r2)β 2 γ > 0, β ∈ (1, 2) Multiquadric I, (γ2 + r2)3/2

−(γ2 + r2)β 1 γ > 0, β ∈ (0, 1) Multiquadric II, −
√

γ2 + r2

(γ2 + r2)−β 0 γ > 0, β > 0 Inverse Multiquadric, (γ2 + r2)−1/2

exp
(

−r2/γ2
)

0 γ > 0 Gaussian, exp
(

−r2/γ2
)

We now use the property of conditional positive definiteness to uniquely determine
an RBF model that interpolates data on a set Y. Let Φi,j = φ(‖yi − yj‖) define the

square matrix Φ ∈ R
|Y|×|Y|, and let Π be the polynomial matrix Πi,j = πi(yj) as

in section 2 so that P (s) =
∑p̂

i=1 νiπi(s). Provided that Y is Pn
d−1-unisolvent (as in

Definition 2.1), we have the equivalent nonsingular symmetric linear system:

(4.2)

[

Φ ΠT

Π 0

] [

λ
ν

]

=

[

f
0

]

.

The top set of equations corresponds to the interpolation conditions in (2.5) for the
RBF model in (4.1), while the lower set ensures uniqueness of the solution.

As in section 2 for polynomial models, for conditionally positive definite functions
of order d, a sufficient condition for the nonsingularity of (4.2) is that the points in
Y be distinct and yield a ΠT of full column rank. Clearly this condition is geometric,
depending only on the location of (but not function values at) the data points.

The saddle point problem in (4.2) will generally be indefinite. However, we employ
a null-space method that directly relies on the conditional positive definiteness of φ.
If ΠT is full rank, then R ∈ R

(n+1)×(n+1) is nonsingular from the truncated QR
factorization ΠT = QR. By the lower set of equations in (4.2) we must have λ = Zω

for ω ∈ R
|Y|−n−1 and any orthogonal basis Z for N (Π). Hence (4.2) reduces to

ZTΦZω = ZT f,(4.3)

Rν = QT (f − ΦZω).(4.4)

Given that ΠT is full rank and the points in Y are distinct, Definition 4.1 directly
implies that ZTΦZ is positive definite for any φ that is conditionally positive definite
of at most order d. Positive definiteness of ZTΦZ guarantees the existence of a
nonsingular lower triangular Cholesky factor L such that

(4.5) ZTΦZ = LLT ,

and the isometry of Z gives the bound

(4.6) ‖λ‖ =
∥

∥ZL−TL−1ZT f
∥

∥ ≤
∥

∥L−1
∥

∥

2 ‖f‖ .

4.2. Fully Linear RBF Models. Thus far we have maintained a very general
RBF framework. For the convergence results in section 3 to apply, we now focus on
a more specific set of radial functions that satisfy two additional conditions:

• φ ∈ C2[R+] and φ′(0) = 0.
• φ is conditionally positive definite of order 2 or less.
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The first condition ensures that the resulting RBF model is twice continuously dif-
ferentiable. The second condition is useful for restricting ourselves to models of the
form (4.1) with a linear tail P ∈ Pn

1 .
For RBF models that are twice continuously differentiable and have a linear tail,

∇m(xb + s) =
∑

{yi∈Y:yi *=s}

λiφ
′(‖s− yi‖)

s− yi
‖s− yi‖

+∇P (s),(4.7)

∇2m(xb + s) =
∑

yi∈Y

λiΘ(‖s− yi‖),(4.8)

with

(4.9) Θ(r) =

{

φ′(‖r‖)
‖r‖ In +

(

φ′′(‖r‖)− φ′(‖r‖)
‖r‖

)

r
‖r‖

rT

‖r‖ if r .= 0,

φ′′(0)In if r = 0,

where we have explicitly defined these derivatives for the special case when s is one
of the interpolation knots in Y.

The following lemma is a consequence of an unproven statement in Oeuvray’s
dissertation [29], which we could not otherwise locate in the literature. It provides
necessary and sufficient conditions on φ for the RBF model m to be twice continuously
differentiable.

Lemma 4.2. The model m defined in (4.1) is twice continuously differentiable on
R

n if and only if φ ∈ C2[R+] and φ′(0) = 0.
Proof. We begin by noting that the polynomial tail P and composition with the

sum over Y are both smooth. Moreover, away from any of the points in Y, m is clearly
twice continuously differentiable if and only if φ ∈ C2[R+]. It now remains only to
treat the case when s = yj ∈ Y.

If φ′ is continuous but φ′(0) .= 0, then since s−yj

‖s−yj‖
is always of bounded magnitude

but does not exist as s → yj, we have that ∇m in (4.7) is not continuous at yj.
We conclude by noting that φ′(0) = 0 is sufficient for the continuity of ∇2m at yj .

To see this, recall from L’Hôpital’s rule in calculus that lima→0
g(a)
a = g′(0), provided

g(0) = 0 and g is differentiable at 0. Applying this result with g = φ′, we have that

lim
s→yj

φ′(‖s− yj‖)
‖s− yj‖

= φ′′(0).

Hence the second term in the expression for Θ in (4.9) vanishes as r → 0, leaving only
the first; that is, limr→0 Θ(r) = φ′′(0)In exists.

We note that this result implies that models using the thin-plate spline radial
function φ(r) = r2 log(r) are not twice continuously differentiable and hence do not
fit in our framework.

Having established conditions for the twice differentiability of the radial portion
of m in (4.1), we now focus on the linear tail P . Without loss of generality, we assume
that the base point xb is an interpolation point so that y1 = 0 ∈ Y. Employing the
standard linear basis and permuting the points, we then have that the polynomial
matrix Πi,j = πi(yj) is of the form

(4.10) Π =

[

Y 0 yn+2 . . . y|Y|

eT 1 1 · · · 1

]

,
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Table 4.2
Upper bounds on RBF components (assumes γ > 0, r ∈ [0,∆], β as in Table 4.1).

φ(r) |φ(r)|
∣

∣

∣

φ′(r)
r

∣

∣

∣
|φ′′(r)|

rβ ∆β β∆β−2 β(β − 1)∆β−2

(γ2 + r2)β , (γ2 +∆2)β 2β(γ2 +∆2)β−1 2β(γ2 +∆2)β−1
(

1 + 2(β−1)∆2

γ2+∆2

)

−(γ2 + r2)β , (γ2 +∆2)β 2βγ2(β−1) 2βγ2(β−1)

(γ2 + r2)−β , γ−2β 2βγ−2(β+1) 2βγ−2(β+1)

exp(−r2/γ2) 1 2/γ2 2/γ2

where e is the vector of ones and Y denotes a matrix of n particular nonzero points
in Y.

Recall that, in addition to the distinctness of the points in Y, a condition for the
nonsingularity of the RBF system (4.2) is that the first n+ 1 columns of Π in (4.10)
are linearly independent. This is exactly the condition needed for the fully linear
interpolation models in section 2, where bounds for the matrix Y were provided.

To fit RBF models with linear tails into the globally convergent trust-region
framework of section 3, we need only to show that the model Hessians are bounded
by some fixed constant κH .

From (4.8) and (4.9), the magnitude of the Hessian depends only on the quantities

λ,
∣

∣

∣

φ′(r)
r

∣

∣

∣
, and |φ′′(r)|. As an example, Table 4.2 provides bounds on the last two

quantities for the radial functions in Table 4.1 when r is restricted to lie in the interval
[0,∆]. In particular, these bounds provide an upper bound for

(4.11) hφ(∆) = max

{

2

∣

∣

∣

∣

φ′(r)

r

∣

∣

∣

∣

+ |φ′′(r)| : r ∈ [0,∆]

}

.

From (4.6) we also have a bound on λ provided that the appropriate Cholesky
factor L is of bounded norm. We bound

∥

∥L−1
∥

∥ inductively by building up the in-
terpolation set Y one point at a time. This inductive method lends itself well to a
practical implementation and was inspired by the development in [4].

To start this inductive argument, we assume that Y consists of n+ 1 points that
are Pn

1 -unisolvent. With only these n + 1 points, λ = 0 is the unique solution to
(4.2), and hence the RBF model is linear. To include an additional point y ∈ R

n in
the interpolation set Y (beyond the initial n+ 1 points), we appeal to the following
lemma (derived in [38]).

Lemma 4.3. Let Y be such that Π is full rank and LLT = ZTΦZ is invertible as
in (4.5). If y ∈ R

n is added to Y, then the new Cholesky factor Ly has an inverse

(4.12) L−1
y =

[

L−1 0
−vT

y L−TL−1

τ(y)
1

τ(y)

]

, with τ(y) =
√

σy − ‖L−1vy‖2,

provided that the constant τ(y) is positive.
Here we see that only the last row of L−1

y is affected by the addition of the new
point y. As noted in [38], the constant σy and vector vy in Lemma 4.3 appear in the
reduced ZT

y ΦyZy = LyL
T
y when y is added, and can be obtained by applying n + 1

Givens rotations to ΠT
y . The following lemma bounds the resulting Cholesky factor

L−1
y as a function of the previous factor L−1, vy, and τ(y).
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Algorithm 2 Algorithm for adding additional interpolation points.
2.0. Input D = {d1, . . . , d|D|} ⊂ R

n, Y consisting of n+ 1 sufficiently affinely independent
points, constants θ2 > 0, ∆ > 0, and pmax ≥ n+ 1.

2.1. Using Y, compute the Cholesky factorization LLT = ZTΦZ as in (4.5).

2.2. For all y ∈ D such that ‖y‖k ≤ ∆:

If τ (y) ≥ θ2,

Update Y ← Y ∪ {y}, Z ← Zy , L← Ly ,
If |Y| = pmax, return.

Lemma 4.4. If
∥

∥L−1
∥

∥ ≤ κ and τ(y) ≥ θ > 0, then

(4.13)
∥

∥L−1
y

∥

∥

2 ≤ κ+
1

θ2
(

1 + ‖vy‖ κ2
)2

.

Proof. Let wy = (w, w̃) ∈ R|Y|+1 be an arbitrary vector with ‖wy‖ = 1. Then

∥

∥L−1
y wy

∥

∥

2
=

∥

∥L−1w
∥

∥

2
+

1

τ(y)2
(

w̃ − vTy L
−TL−1w

)2

≤ κ+
1

θ2

(

w̃2 − 2w̃vTy L
−TL−1w +

(

vTy L
−TL−1w

)2
)

≤ κ+
1

θ2

(

1 + 2
∥

∥L−1vy
∥

∥

∥

∥L−1w
∥

∥+
(
∥

∥L−1vy
∥

∥

∥

∥L−1w
∥

∥

)2
)

≤ κ+
1

θ2
(

1 + ‖vy‖κ2
)2

.

Lemma 4.4 suggests the procedure given in Algorithm 2, which we use in ORBIT

to iteratively add previously evaluated points to the interpolation set Y. Before this
algorithm is called, we assume that Y consists of n+1 sufficiently affinely independent
points generated as described in section 2 and hence the initial L matrix is empty.

Figure 4.1 (a) gives an example of τ(y)−1 values for different interpolation sets in
R

2. In particular we note that τ(y) approaches zero as y approaches any of the points

already in the interpolation set Y. Figure 4.1 (b) shows the behavior of
∥

∥L−1
y

∥

∥

2
for

the same interpolation sets and illustrates the relative correspondence between the

values of τ(y)−1 and
∥

∥L−1
y

∥

∥

2
.

We now assume that both Y and the point y being added to the interpolation
set belong to some bounded domain {x ∈ R

n : ‖x‖k ≤ ∆}. Thus the quantities
{‖x− z‖ : x, z ∈ Y ∪ y} are all of magnitude no more than 2c1∆, since ‖·‖ ≤ c1 ‖·‖k.
The elements in Φi,j = φ(‖yi − yj‖) and φy = [φ(‖y − y1‖), . . . ,φ(

∥

∥y − y|Y|

∥

∥)]T are
bounded by kφ(2c1∆), where

(4.14) kφ(2c1∆) = max{|φ(r)| : r ∈ [0, 2c1∆]}.

Bounds for the specific φ functions of the radial basis functions of interest are provided
in Table 4.2. Using the isometry of Zy we hence have the bound

(4.15) ‖vy‖ ≤
√

|Y|(|Y| + 1)kφ(2c1∆),

independent of where in {x ∈ R
n : ‖x‖k ≤ ∆} the point y lies, which can be used in

(4.13) to bound
∥

∥L−1
y

∥

∥. The following theorem gives the resulting bound.
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(a) τ(y)−1

(b)
∥

∥L−1
y

∥

∥

2

Fig. 4.1. Contours for τ(y)−1 and
∥

∥L−1
y

∥

∥

2 values (4.12) for a multiquadric RBF interpolating

4, 5, and 6 points in R2 (log scale). The quantities grow as the interpolation points are approached.

Theorem 4.5. Let B = {x ∈ R
n : ‖x− xb‖k ≤ ∆}. Let Y ⊂ B − xb be

a set of distinct interpolation points, n + 1 of which are affinely independent and
|f(xb + yi)| ≤ fmax for all yi ∈ Y. Then for a model of the form (4.1), with a bound
hφ as defined in (4.11), interpolating f on xb + Y, we have that for all x ∈ B

(4.16)
∥

∥∇2m(x)
∥

∥ ≤ |Y|
∥

∥L−1
∥

∥

2
hφ(2c1∆)fmax =: κH .

Proof. Let ri = s − yi, and note that when s and Y both belong to B − xb,
‖ri‖ ≤ c1 ‖ri‖k ≤ 2c1∆ for i = 1, . . . , |Y|. Thus for an arbitrary w with ‖w‖ = 1,

∥

∥∇2m(xb + s)w
∥

∥ ≤
|Y|
∑

i=1

|λi|
∥

∥

∥

∥

φ′(‖ri‖)
‖ri‖

w +

(

φ′′(‖ri‖)−
φ′(‖ri‖)
‖ri‖

)

rTi w

‖ri‖
ri
‖ri‖

∥

∥

∥

∥

,

≤
|Y|
∑

i=1

|λi|
[

2

∣

∣

∣

∣

φ′(‖ri‖)
‖ri‖

∣

∣

∣

∣

+ |φ′′(‖ri‖)|
]

≤ ‖λ‖1h(2c1∆) ≤
√

|Y|
∥

∥L−1
∥

∥

2 ‖f‖h(2c1∆),

where the last two inequalities follow from (4.11) and (4.6), respectively. Noting that
‖f‖ ≤

√

|Y|fmax gives the desired result.

4.3. RBF Models in ORBIT. Having shown how RBFs fit into the globally
convergent framework for fully linear models, we collect some final details of ORBIT,
consisting of Algorithm 1 and the RBF model formation summarized in Algorithm 3.
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Algorithm 3 Algorithm for constructing model mk.

3.0. Input D ⊂ R
n, constants θ2 > 0, θ4 ≥ θ3 ≥ 1, θ1 ∈ (0, 1

θ3
], ∆max ≥ ∆k > 0, and

pmax ≥ n+ 1.

3.1. Seek affinely independent interpolation set Y within distance θ3∆k.

Save z1 as a model-improving direction for use in Step 1.5 of Algorithm 1.

If |Y| < n+ 1 (and hence mk is not fully linear):

Seek n+ 1− |Y| additional points in Y within distance θ4∆max.
If |Y| < n + 1, evaluate f at remaining n + 1 − |Y| model points so that
|Y| = n+ 1.

3.2. Use up to pmax − n− 1 additional points in D within θ4∆max using Algorithm 2.

3.3. Obtain model parameters by (4.3) and (4.4).

Algorithm 3 requires that the interpolation points in Y lie within some constant
factor of the largest trust region ∆max. This region, Bmax = {y ∈ R

n : ‖y‖k ≤
θ4∆max}, is chosen to be larger than the current trust region so that the algorithm
can make use of more points previously evaluated in the course of the optimization.

In Algorithm 3 we certify a model to be fully linear if n + 1 points within {y ∈
R

n : ‖y‖k ≤ θ3∆k} result in pivots larger than θ1, where the constant θ1 is chosen so
as to be attainable by the model directions (scaled by ∆k) discussed in section 2.

If not enough points are found, the model will not be fully linear; thus, we must
expand the search for affinely independent points within the larger region Bmax. If
still fewer than n + 1 points are available, we must evaluate f along a set of the
model-improving directions Z to ensure that Y is Pn

1 -unisolvent.
Additional available points within Bmax are added to the interpolation set Y

provided that they keep τ(y) ≥ θ2 > 0, until a maximum of pmax points are in Y.
Since we have assumed that f is bounded on L(x0) and that Y ⊂ Bmax, the bound

(4.16) holds for all models used by the algorithm, regardless of whether they are fully
linear. Provided that the radial function φ is chosen to satisfy the requirements of
Lemma 4.2, m will be twice continuously differentiable. Hence ∇m is Lipschitz con-
tinuous on Bmax, and κH in (3.8) is one possible Lipschitz constant. When combined
with the results of section 2 showing that such interpolation models can be made
fully linear in a finite procedure, Theorem 3.2 guarantees that limk→∞ ∇f(xk) = 0
for trust-region algorithms using these RBFs, and ORBIT in particular.

5. Computational Experiments. We now present numerical results aimed at
determining the effect of selecting different types of RBF models. We follow the
benchmarking procedures in [26], with the derivative-free convergence test

(5.1) f(x0)− f(x) ≥ (1− τ)(f(x0)− fL),

where τ > 0 is a tolerance, x0 is the starting point, and fL is the smallest value of f
obtained by any tested solver within a fixed number, µf , of function evaluations. We
note that in (5.1), a problem is “solved” when the achieved reduction from the initial
value, f(x0)− f(x), is at least 1− τ times the best possible reduction, f(x0)− fL.

For each solver s ∈ S and problem p ∈ P , we define tp,s as the number of function
evaluations required by s to satisfy the convergence test (5.1) on p, with the convention
that tp,s = ∞ if s does not satisfy the convergence test on p within µf evaluations.

If we assume that (i) the differences in times for solvers to determine a point for
evaluation of f(x) are negligible relative to the time to evaluate the function and (ii)
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the function requires the same amount of time to evaluate at any point in its domain,
then differences in the measure tp,s roughly correspond to differences in computing
time. Assumption (i) is reasonable for the computationally expensive simulation-
based problems motivating this work.

Given this measure, we define the data profile ds(α) for solver s ∈ S as

(5.2) ds(α) =
1

|P|

∣

∣

∣

∣

{

p ∈ P :
tp,s

np + 1
≤ α

}
∣

∣

∣

∣

,

where np is the number of variables in problem p ∈ P . We note that the data profile
ds : R → [0, 1] is a nondecreasing step function independent of the data profiles of the
other solvers S\{s}, provided that fL is fixed. By this definition, ds(κ) is the fraction
of problems that can be solved within κ simplex gradient estimates (and hence a
budget of κ(np + 1) function evaluations).

5.1. Smooth Test Problems. We begin by considering the test set PS of 53
smooth, nonlinear least-squares problems in [26]. Each unconstrained problem is

defined by a starting point x0 and a function f(x) =
∑k

i=1 fi(x)
2, comprising a set

of smooth components. The functions vary in dimension from n = 2 to n = 12, with
the 53 problems being distributed roughly uniformly across these dimensions. The
maximum number of function evaluations is set to µf = 1300 so that at least the
equivalent of 100 simplex gradient estimates can be obtained on all the problems in
PS . The initial trust-region radius is set to ∆0 = max {1, ‖x0‖∞} for each problem.

The ORBIT implementation illustrated here relies on a 2-norm trust region with
parameter values as in [38]: η0 = 0, η1 = .2, γ0 = 1

2 , γ1 = 2, ∆max = 103∆0,
ε = 10−10, κd = 10−4, α = .9, µ = 2000, β = 1000, θ1 = 10−3, θ2 = 10−7, θ3 = 10,
θ4 = max(

√
n, 10). In addition to the backtracking line search detailed here, we use an

augmented Lagrangian method to approximately solve the trust-region subproblem.
The first solver set we consider is the set SA consisting of four radial basis function

types for ORBIT:
Multiquadric: φ(r) = −

√
1 + r2, with pmax = 2n+ 1.

Cubic: φ(r) = r3, with pmax = 2n+ 1.
Gaussian: φ(r) = exp(−r2), with pmax = 2n+ 1.
Thin plate: φ(r) = r2 log(r), with pmax = 2n+ 1.

The common theme among these models is that they interpolate at most pmax = 2n+1
points, chosen because this is the number of interpolation points recommended by
Powell for the NEWUOA algorithm [32]. We tested other values of the parameter γ
used by multiquadric and Gaussian RBFs but found that γ = 1 worked well for both.

In our testing, we examined accuracy levels of τ = 10−k for several k. For the
sake of brevity, in Figure 5.1 we present the data profiles for k = 1 and k = 5. Recall
that τ = 0.1 corresponds to a 90% reduction relative to the best possible reduction
in µf = 1300 function evaluations. As discussed in [26], data profiles are used to see
which solver is likely to achieve a given reduction of the function within a specific
computational budget. For example, given the equivalent of 15 simplex gradients
(15(n+ 1) function evaluations), we see that the cubic, multiquadric, Gaussian, and
thin-plate spline variants respectively solve 38%, 30%, 27%, and 30% of problems to
τ = 10−5 accuracy.

For the accuracy levels shown, the cubic variant is generally best (especially given
small budgets), while the Gaussian and thin-plate spline variants are generally worst.
The differences are smaller than those seen in [26], where S consisted of three very
different solvers.
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Fig. 5.1. Data profiles ds(κ) for different RBF types with pmax = 2n+1 on the smooth problems
PS . These profiles show the fraction of problems solved as a function of a computational budget of
simplex gradients (κ(n+ 1) function evaluations).

Fig. 5.2. Data profiles ds(κ) for different RBF types with pmax = (n+1)(n+2)
2 on the smooth

problems PS . These profiles show the fraction of problems solved as a function of a computational
budget of simplex gradients (κ(n+ 1) function evaluations).

The second solver set, SB , consists of the same four radial basis function types:

Multiquadric: φ(r) = −
√
1 + r2, with pmax = (n+1)(n+2)

2 .

Cubic: φ(r) = r3, with pmax = (n+1)(n+2)
2 .

Gaussian: φ(r) = exp(−r2), with pmax = (n+1)(n+2)
2 .

Thin plate: φ(r) = r2 log(r), with pmax = (n+1)(n+2)
2 .

Here, the maximum number of points being interpolated corresponds to the number
of points needed to uniquely fit an interpolating quadratic model. This choice is made
solely to indicate how the performance changes with a larger number of interpolation
points.

Figure 5.2 shows the data profiles for the accuracy levels τ ∈ {10−1, 10−5}. The
cubic variant is again generally best (especially given small budgets), but there are now
larger differences among the variants. When the equivalent of 15 simplex gradients
is available, we see that the cubic, multiquadric, Gaussian, and thin-plate spline
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Fig. 5.3. Effect of changing the maximum number of interpolation points, pmax, on the data
profiles ds(κ) for the smooth problems PS .

variants are respectively able to now solve 37%, 28%, 16%, 11% of problems to an
accuracy level of τ = 10−5. We note that the raw data in Figure 5.2 should not be
quantitatively compared with that in Figure 5.1 because the best function value found
for each problem is obtained from only the solvers tested (in SA or SB) and hence the
convergence tests differ.

Our final test on these problems compares the best variants for the two different
maximum numbers of interpolation points. The solver set SC consists of the following:

Cubic A: φ(r) = r3, with pmax = 2n+ 1.

Cubic B: φ(r) = r3, with pmax = (n+1)(n+2)
2 .

Figure 5.3 shows that these two variants perform comparably, with differences
smaller than those seen in Figures 5.1 and 5.2. As expected, as the number of function
evaluations grows, the variant that is allowed to interpolate more points performs
better. This variant also performs better when higher accuracy levels are demanded,
and we attribute this performance to the fact that the model interpolating more
points is generally a better approximation of the function f . The main downside
of interpolating more points is that the linear systems in section 4 will also grow,
resulting in a higher linear algebra cost per iteration. As we will see in the next set
of tests, for many applications, this cost may be viewed as negligible relative to the
cost of evaluating the function f .

We are, however, surprised to see that the 2n+1 variant performs better for some
smaller budgets. For example, this variant performs slightly better between 5 and 15
simplex gradient estimates when τ = 10−1 and between 4 and 9 simplex gradient
estimates when τ = 10−5. Since the initial n + 1 evaluations are common to both
variants and since the parameter pmax has no effect on the subroutine determining the
sufficiently affinely independent points, we might expect that the variant interpolating
more points would do at least as well as the variant interpolating fewer points.

Further results comparing ORBIT (in 2-norm and ∞-norm trust regions) with
NEWUOA on a set of noisy test problems are provided in [38].

5.2. An Environmental Application. We now illustrate the use of RBF mod-
els on a computationally expensive application problem.

The Blaine Naval Ammunition Depot is a 48,800 acre site east of Hastings, Ne-
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braska. Nearly half of the naval ammunition used in World War II was produced
here, with the result that much toxic waste was generated and disposed of on the site.
Both trichloroethylene (TCE), a probable carcinogen, and trinitrotoluene (TNT), a
possible carcinogen, are present in the groundwater. Because of their possible con-
nection to cancer, the two chemicals have EPA allowable limits that are extremely
low. For the problem considered here the remaining concentrations (after 30 years of
remediation is completed) for TCE must be less than 5.0 parts per billion (ppb) and
for TNT must be less than 2.5 ppb. The transport of these contaminants is made es-
pecially difficult because the predominant groundwater flow direction changes during
the region’s irrigation season, which lasts roughly two and a half months.

As part of a collaboration [3, 39] among environmental consultants, academic
institutions, and governmental agencies, several optimization problems were formu-
lated. Here we focus on one of the simpler formulations, where we have control over
15 injection and extraction wells located at fixed positions in the site. At each of these
wells we can either inject clean water or extract and then treat contaminated water
(e.g., with air stripping or carbon adsorption). Each instance of the decision variables
hence corresponds to a pumping strategy that will run over a 30-year time horizon.
For scaling purposes, each variable is scaled so that the range of realistic pumping
rates (corresponding to injection and extraction rates between 0 and 350 gallons per
minute) maps to the interval [0, 1].

The groundwater model is formally described in [39] and was calibrated for steady-
state and transient conditions to historical plume data based on particle tracking.
Groundwater occurs approximately 100 feet below the ground surface. This ground-
water is predominantly in a semi-confined layer and is the major water supply source
for the region. In the formulation considered, the surface area is partitioned into a
model grid of 11,152 cells covering 134 square miles. Six layers (corresponding to the
unconfined aquifer, upper confining layer, and the semi-confined aquifer split into four
layers) were employed in the vertical direction.

The groundwater flow is simulated using MODFLOW 2000 [34], which solves the
transient groundwater equation (see, e.g., [34, p. 10]) using a finite-difference method.
Contaminant transport is simulated with the modular three-dimensional transport
code MT3D-MS [40]. There are other contaminants present (e.g., forms of PCE,
DCE, TCA, and RDX) at the site, but the formulation considered [3, 39] includes
these other volatile organic compounds as part of the TCE concentration since they
share similar transport behaviors with TCE. Hence, MT3D-MS simulates only the
concentration of the two species TCE and TNT.

The objective is to minimize the cost of the pumping strategy (including the
electricity needed to run the pumps) plus a financial penalty associated with exceeding
the constraints on maximum allowable concentration of TCE and TNT over the 30-
year planning horizon. For each pumping strategy, these concentrations are obtained
by running the coupled simulators MODFLOW 2000 and MT3D-MS. For a given set
of pumping rates, this process required more than 45 minutes on a Pentium 4 dual-
core desktop. Thus, each evaluation of the objective function required more than 45
minutes.

In the spirit of [26], in addition to ORBIT we considered three solvers designed to
solve unconstrained serial optimization problems using only function values.

NMSMAX is an implementation of the Nelder-Mead method and is due to Higham
[17]. We specified that the initial simplex have sides of length ∆0. Since
NMSMAX is defined for maximization problems, it was given −f .
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Fig. 5.4. Mean (in 8 trials) of the best function value found for the first 80 evaluations on the
Blaine problem. All ORBIT runs found a local minimum within 80 evaluations, while NEWUOA

obtained a lower function value after 72 evaluations.

SID-PSM is a pattern search solver due to Custódio and Vicente [13]. It is especially
designed to use previous function evaluations. We used version 0.4 with an
initial step size set to∆0. We note that the performance of SID-PSM has since
been improved with the incorporation of interpolating models (as reported in
[12]), but we have reported the originally tested version as an example of an
industrial-strength pattern search method not incorporating such models.

NEWUOA is a trust-region solver using a quadratic model and is due to Powell [32].
The number of interpolation points was fixed at the recommended value of
pmax = 2n+ 1, and the initial trust-region radius was set to ∆0.

ORBIT used the same parameter values as used on the test functions, with a cubic
RBF, initial trust-region radius ∆0, and a maximum number of interpolation
points taken to be larger than the number of function evaluations, pmax ≥ µf .

Each of these solvers also requires a starting point x0 and a maximum number
of allowable function evaluations, µf . A common selection of ∆0 = 0.1 was made to
standardize the initial evaluations across the collection of solvers. Hence each solver
except SID-PSM evaluated the same initial n + 1 points. SID-PSM moves off this
initial pattern once it sees a reduction. All other inputs were set to their default
values except that we effectively set all termination parameters to zero to ensure that
the solvers terminate only after exhausting the budget µf function evaluations.

We set µf = 5(n + 1) = 80; and since each evaluation (i.e., an environmental
model simulation) requires more than 45 minutes, a single run of one solver thus
requires nearly 3 CPU-days. As this problem is noisy and has multiple local minima,
we chose to run each solver from the same eight starting points generated uniformly
at random within the hypercube [0, 1]15 of interest. Thus, running four solvers over
these eight starting points required roughly 3 CPU-months to obtain.

Figure 5.4 shows the average of the best function value obtained over the course
of the first 80 function evaluations. By design, all solvers start from the same function
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value. The ORBIT solver does best initially, obtaining a function value of 70,000 in
46 evaluations. The ORBIT trajectory quickly flattens out as it is the first solver
to find a local minima, with an average value of 65,600. In this case, however, the
local minimum found most quickly by ORBIT has (on average) a higher function value
than the point (not yet a local minimum) found by the NEWUOA and NMSMAX solvers
after µf = 80 evaluations. Hence, in these tests, NEWUOA and NMSMAX are especially
good at finding a good minimum for a noisy function. On average, given µf = 80
evaluations, NEWUOA finds a point with f ≈ 60, 700. None of these algorithms are
designed to be global optimization solvers, so the focus here is on the time to find the
first local minimum.

The Blaine problem highlights the fact that solvers will have different perfor-
mance on different functions and that many application problems contain computa-
tional noise and multiple distinct local minima, which can prevent globally convergent
local methods from finding good solutions. Comparisons between ORBIT and other
derivative-free algorithms on two different problems from environmental engineering
can be found in [38]. The results in [38] indicate that two variants of ORBIT outper-
formed the three other solvers tested on these two environmental problems.

6. Conclusions and Perspectives. In this paper we have introduced and an-
alyzed first-order, derivative-free trust-region algorithms based on radial basis func-
tions, which are globally convergent. We first showed that, provided a function and
a model are sufficiently smooth, interpolation on a set of sufficiently affinely indepen-
dent points is enough to guarantee Taylor-like error bounds for both the model and its
gradient. In section 3 we extended the recent derivative-free trust-region framework
in [9] to include nonlinear fully linear models. In section 4 we showed how RBFs can
fit in this framework, and we introduced procedures for bounding an RBF model’s
Hessian. In particular, these results show that the ORBIT algorithm introduced in [38]
converges to first-order critical points.

The central element of an RBF is the radial function. We have illustrated the
results with a few different types of radial functions. However, the results presented
here are wide-reaching, requiring only the following conditions on φ:

1. φ is twice continuously differentiable on [0, u), for some u > 0,
2. φ′(0) = 0, and
3. φ is conditionally positive definite of order 2.

While the last condition seems to be the most restrictive, only the first condition
eliminates the thin-plate spline, popular in other applications of RBFs, from our
analysis. Indeed, the numerical results show that the thin-plate spline performed worst
among the tested variants. We anticipate that this very general framework will be
useful to researchers developing new optimization algorithms based on RBFs. Indeed,
this theory extends to both the BOOSTERS algorithm [30] and ORBIT algorithm [38].

Our numerical results are aimed at illustrating the effect of using different types of
radial functions φ in the ORBIT algorithm [38]. We saw that the cubic radial function
slightly outperformed the multiquadric radial function, while the Gaussian radial
function performed worse. These results are interesting because Gaussian radial basis
functions are the only ones among those tested that are conditionally positive definite
of order 0, requiring neither a linear nor a constant term to uniquely interpolated
scattered data. Gaussian RBFs are usually used in kriging [11], which forms the basis
for the global optimization methods such as [19]. We also found that the performance
differences are greater when the RBF type is changed than when the maximum number
of interpolation points is varied.
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Function
Quadratic
Cubic RBF

Fig. 6.1. The function f(x) = x sin(xπ/4) + x2 approximated by a quadratic interpolating
(n+1)(n+2)

2 = 3 points and a cubic RBF interpolating (from left to right) 3, 4, and 5 points.

We also ran ORBIT on a computationally expensive environmental engineering
problem, requiring 3 CPU-days for a single run of 80 evaluations. On this prob-
lem ORBIT quickly found a local minimum and obtained a good solution within 50
expensive evaluations.

Not surprisingly, there is no “free lunch”: while a method using RBFs outper-
formed methods using quadratics on the two application problems in [38], a quadratic
method found the best solution on the application considered here when given a large
enough budget of evaluations. Determining when to use a quadratic and when to use
an RBF remains an open research problem. Our experience suggests that RBFs can
be especially useful when f is nonconvex and has nontrivial higher-order derivatives.

An example of how this difference is amplified as more interpolation points are
allowed is shown in Figure 6.1. As the number of points interpolated grow, the RBF
model exhibits better extrapolation than does the quadratic with a fixed number of
points. Similar behavior is seen even when the additional points are incorporated
using a regression quadratic or a higher-order polynomial.

The present work focused primarily on the theoretical implications needed to
ensure that methods using radial basis function models fit in a globally convergent
trust-region framework. The results on the Blaine problem and the behavior seen
in Figure 6.1 have motivated our development of global optimization methods in
[36], and we intend to pursue “large-step” variants of ORBIT designed to step over
computational noise.

We note that the theory presented here can be extended to models of other
forms. We mention quadratics in [37], but we could also have used higher-order
polynomial tails for better approximation bounds. For example, methods using a
suitably conditioned quadratic tail could be expected to converge to second-order
local minima. In fact, we attribute the quadratic-like convergence behavior RBF
methods exhibit when at least (n+1)(n+2)

2 points are interpolated to the fact that the
RBF models are fully quadratic with probability 1, albeit with theoretically large
Taylor constants. We leave as future work the extensive numerical testing needed
when many points are interpolated.
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